Stress Influence Charts for Transversely Isotropic Rocks

C. D. WANG†
J. J. LIAO†

A graphical procedure to calculate stresses in a transversely isotropic half-space subjected to a three-dimensional surface load has been developed. The surface load can be distributed on an irregularly-shaped area. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the half-space. The closed-form solutions for stresses at a point under the vertex of a loading sector, with a unit load intensity are presented first. Based on these solutions, five influence charts are constructed for calculating the six components of a stress tensor at any given point in the half-space. The charts are composed of unit blocks. Each unit block is bounded by two adjacent radii and arcs, and contributes the same level of influence to the stress within the half-space. An example is presented to demonstrate the use of the new graphical method. For the case analyzed, results from the new graphical method agree with those of analytical solutions within 3%. The new influence charts can be a practical alternative to the existing analytical or numerical solutions, and provides results with reasonable accuracy. © 1998 Elsevier Science Ltd.

INTRODUCTION

Anisotropy in deformability is common for foliated metamorphic, stratified sedimentary, and regularly jointed rock masses. Existing analytical solutions based on linear and isotropic elasticity for stress analyses in these types of rocks or rock masses are only rough approximations. To obtain more desirable results, it is imperative to consider the anisotropic deformability. There have been several reports [1–3] on the closed-form solutions of displacements and stresses due to a point load for a transversely isotropic half-space. Solutions other than point load conditions, however, are limited. Elastic solutions for displacements or stresses in a half-space, subjected to loads of regular shapes, (e.g., line loads [4–6], rectangular loads [6], triangular loads [7], circular loads [4, 8–14], parabolic loading over a circular region [12, 15–17], ring loads [18, 19], elliptical loads [20, 21]), and other related problems [22–25] have also been proposed. These solutions are only applicable to loading of specific and/or regular geometric patterns. It is possible to estimate the stresses and displacements due to an arbitrarily-shaped loading. The loading area is divided into many regularly-shaped sub-areas: influences from these sub-areas are then superimposed. However, the process of superposition is tedious and inconvenient.

With the advances in high-speed computers, numerical techniques have been developed for calculating the stresses underneath an irregularly-shaped foundation in the past few decades. These developments include the techniques of equivalent area [26], three-dimensional finite element [27], triangulating [28–31], computer-aided graphics [32], parametric mapping [33], and methods using a packaged software such as MathCAD [34, 35]. Through the use of computer, these methods can easily be automated and hence can be efficient to use.

A graphical method for general shapes of loaded area was first devised by Burmister [36]. That method provided the basis of the Newmark's influence charts [37–39]. The influence charts are efficient to use in calculating stress/displacement as compared to other complex mathematical or numerical methods. However, the advantages of Newmark's charts diminish if the loading area is not uniform or stresses at multiple depths are required simultaneously. Salas [40] proposed modified influence charts. This method is not practical because it involves the use of a table for calculating stress, which is complicated and tedious. Several extensions of the Newmark's method are available. Barber [41, 42] and Barksdale and Harr [43] developed influence charts for the vertical stress due to horizontal shear loading. Huang [44] constructed diagrams for an embedded, distributed uniform vertical load. Poulos [45] proposed a graphical procedure called the sector method. His method can calculate the
displacements and stresses due to any general shape of loaded area.

Applications of the above-mentioned methods are mostly restricted to the stress/displacement evaluation in isotropic media. To the authors' knowledge, no graphical method of stress/displacement calculation has been proposed for a transversely isotropic medium. The aim of this paper is to construct a set of influence

\[\beta : \text{central angle} \]
\[\tan \alpha_i = \frac{r}{u_i} \]
\[(i = 1, 2, 3) \]

\[\Delta_i = s^i, 4q = 0, \text{ for } \nu = 0.15 \text{ and } \nu' = 0.35 \]
\[\Delta_i = s^i, 4q = 0, \text{ for } \nu = \nu' = 0.25 \]
\[\Delta_i = s^i, 4q = 0, \text{ for } \nu = 0.35 \text{ and } \nu' = 0.15 \]

\[\Delta_{1,2,3} > 0 \]
\[\Delta < 0, \Delta_{1,2,3} > 0 \]
\[\Delta_{1,2} < 0, \Delta_{1,2,3} > 0 \]
\[\Delta_{1,2} < 0, \Delta_{1,2,3} < 0 \]

\[\frac{E}{E'} \]

Fig. 2. Distribution of the three types of the characteristic roots for transversely isotropic rocks.
charts analogous to those of Newmark’s [38]. The new influence charts are applicable to transversely isotropic media subjected to three-dimensional, arbitrarily-shaped loads. By superposition of values corresponding to the influence charts, the six components of stress tensor at any point in the half-space can be estimated. This paper describes the background of the new influence charts and their application procedure. An illustrative example is presented at the end of the paper to demonstrate the procedure of calculating induced stress using the proposed influence charts. The results are then validated with analytical solutions.

Table 1. Root types of transversely isotropic rocks according to published data

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Test methods</th>
<th>E (GPa)</th>
<th>E' (GPa)</th>
<th>ν</th>
<th>ν'</th>
<th>G' (GPa)</th>
<th>Root type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinto [46]</td>
<td>schist I</td>
<td>uniaxial compression, parallel</td>
<td>95.4</td>
<td>74.5</td>
<td>0.27</td>
<td>0.27</td>
<td>27.2</td>
<td>case 1</td>
</tr>
<tr>
<td></td>
<td>schist II</td>
<td>uniaxial compression, inclined</td>
<td>76.9</td>
<td>41.0</td>
<td>0.22</td>
<td>0.27</td>
<td>20.5</td>
<td>case 1</td>
</tr>
<tr>
<td></td>
<td>schist III</td>
<td>uniaxial compression, inclined</td>
<td>63.4</td>
<td>20.0</td>
<td>0.13</td>
<td>0.21</td>
<td>7.9</td>
<td>case 1</td>
</tr>
<tr>
<td>Honam et al. [47]</td>
<td>slate</td>
<td>ultrasonic</td>
<td>121.3</td>
<td>58.9</td>
<td>0.19</td>
<td>0.11</td>
<td>15.1</td>
<td>case 1</td>
</tr>
<tr>
<td>Liu et al. [48]</td>
<td>argillite</td>
<td>uniaxial compression</td>
<td>51.8</td>
<td>32.2</td>
<td>0.19</td>
<td>0.18</td>
<td>13.3</td>
<td>case 1</td>
</tr>
<tr>
<td>Amadeo [49]</td>
<td>Loveland sandstone I</td>
<td>uniaxial compression</td>
<td>29.3</td>
<td>23.9</td>
<td>0.18</td>
<td>0.13</td>
<td>6.2</td>
<td>case 1</td>
</tr>
<tr>
<td></td>
<td>Loveland sandstone II</td>
<td>uniaxial compression</td>
<td>35.5</td>
<td>44.6</td>
<td>0.08</td>
<td>0.13</td>
<td>19.1</td>
<td>case 3</td>
</tr>
<tr>
<td>Liao et al. [50]</td>
<td>argillite</td>
<td>direct tension</td>
<td>59.3</td>
<td>51.9</td>
<td>0.22</td>
<td>0.10</td>
<td>14.9</td>
<td>case 1</td>
</tr>
<tr>
<td>Liao et al. [51]</td>
<td>argillite</td>
<td>ultrasonic</td>
<td>68.3</td>
<td>51.4</td>
<td>0.20</td>
<td>0.16</td>
<td>21.0</td>
<td>case 1</td>
</tr>
</tbody>
</table>

DEFORMABILITY OF TRANSVERSELY ISOTROPIC ROCKS

Anisotropy is a general characteristic of foliated metamorphic rocks (e.g., argillite, slate, schist, phyllite, gneiss), stratified sedimentary rocks (e.g., shale, sandstone, coal, limestone), and regularly jointed rock masses. Deformability anisotropy implies that the deformability of a material is direction dependent. Depending on the planes of elastic symmetry, rock can be of general anisotropy, orthotropy, transverse isotropy, or complete isotropy. Practically, an anisotropic rock can be modelled as either an orthotropic or a

![Fig. 3. Influence chart for anisotropic stress](image-url)
transversely isotropic material. Orthotropy implies that three orthogonal planes of elastic symmetry exist and that the orientations of these planes remain the same throughout the rock. For a transversely isotropic rock, there is an axis of symmetry of rotation. The rock has isotropic properties in planes normal to this axis. A rock is completely isotropic if it is elastically identical in any direction. The number of elastic constants for describing their deformability is 21, 9, 5, and 2 for generally anisotropic, orthotropic, transversely isotropic, and isotropic rock, respectively. The deformability of a transversely isotropic material can be expressed as the following matrix form, in which the z-axis be the rotation axis of elastic symmetry, x- and y-axes in the plane of transverse isotropy.

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\tau_{xz} \\
\tau_{yz} \\
\tau_{xy}
\end{bmatrix} = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{bmatrix} \begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz} \\
\gamma_{xz} \\
\gamma_{yz} \\
\gamma_{xy}
\end{bmatrix}
\]

(1)

where \(\sigma_{xx}, \sigma_{yy}, \sigma_{zz}\) are normal stresses; \(\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}\) are normal strains; \(\tau_{xz}, \tau_{yz}, \tau_{xy}\) are shear stresses; \(\gamma_{xz}, \gamma_{yz}, \gamma_{xy}\) are shear strains; \(C_{11}, C_{12}, C_{13}, C_{33}, C_{44}, C_{66}\) are elastic constants. The elastic constant \(C_{12}\) is equal to \(C_{11} - 2C_{66}\). Hence, only five elastic constants, i.e., \(C_{11}, C_{12}, C_{13}, C_{33}, C_{44}\), \(C_{66}\) are independent for a transversely isotropic material. These constants are directly related to the engineering elastic constants \(E, E', v, v'\) and \(G'\) as follows:

\[
C_{11} = \frac{E(1 - (E/E')v/2)}{(1 + v)(1 - v - (2E/E')v/2)}
\]

\[
C_{13} = \frac{E}{1 - (2E/E')v/2}
\]

\[
C_{33} = E'(1 - v)
\]

\[
C_{44} = G'
\]

\[
C_{66} = \frac{E}{2(1 + v)}
\]

where \(E, E'\) are the Young's moduli in the plane of transverse isotropy and its normal, respectively; \(v, v'\) are the Poisson’s ratios characterizing the lateral strain
in the plane of transverse isotropy to a normal stress acting parallel and normal to it, respectively; and G is the shear modulus in planes normal to the plane of transverse isotropy.

These engineering elastic constants can be determined by static or dynamic experiments in the laboratory. Readers are referred to [46–51] for details of these methods.

CONSTRUCTION OF THE INFLUENCE CHARTS

This paper concentrates on the development of influence charts that calculate the stresses at a point, in a transversely isotropic half-space, subjected to surface loads. Similar to Newmark’s charts [38] for isotropic materials, the proposed charts contain unit blocks. Each block is bounded by two radial lines and two adjacent arcs. The radii of the circles relate to the depth of the interested point in the half-space. The influence value of a unit block in stress should be equal and independent of its location in the chart. To facilitate block counting, the plan of the surface load is drawn to a scale that is proportional to the depth of the interested point. The unit blocks are made roughly square. The number of blocks covered by the scaled loaded area is then counted.

Combining the solutions for stresses induced by different sectors with uniform loads (Fig. 1 shows a typical sector), one can obtain the stresses at point C with depth u_z due to the uniform load on a unit block.

Stresses under the vertex of a uniformly loaded sector of a circle

The solutions of stresses in a transversely isotropic half-space subjected to a point load have been derived by several investigators (e.g. [1–3]). Integrating the point load solutions, one can obtain the stresses in the half-space subjected to a uniform surface load of any irregularly-shaped area. Details of deriving stresses under the vertex of a uniformly loaded sector of a circle in a transversely isotropic half-space, based on the point load solutions by Liao and Wang [3] are described as follows.

Figure 1 depicts a uniform load, P_0 (force per unit area, $j = x$, y, z) acts on a sector bounded by two radial lines and a circle arc. In the figure, the depth of point $C(0, 0, u_z)$ under the vertex is u_z, radius of the arc is r, and the central angle is symbol β (positive counterclockwise with respect to x-axis). Consider an elementary area of $r \, dr \, d\beta$ in the sector, the stress at point C, $[\sigma]^{\beta}$ is derived by integrating the point load...
solutions [3] with \(dr \) from 0 to \(r \) and \(d\beta \) from 0 to \(\beta \) [52] as:

\[
[\sigma]^C = \int_0^\beta \int_0^r [\sigma]^p r \, dr \, d\beta
\]

(2)

where \([\sigma] = [\sigma_x, \sigma_y, \sigma_z, \tau_{xz}, \tau_{xy}, \tau_{yz}]^T\) (superscript \(T \) denotes the transpose of matrix); the superscript \(C \) denotes the point \(C \) at which the induced stresses are evaluated; the superscript \(p \) indicates a point load acting at point \(O \). Upon integration, \([\sigma]^C\) has the following components:

\[
\sigma_{xx}^C = \bar{P}_x \left[- (4m_1 - 3m_2) \cdot aA_1 + (4m_2 - 3m_4) \cdot aA_2 - 2u_3 \cdot aA_3 + m_3 \cdot fD_1 + m_4 \cdot fD_2 - 2u_3 \cdot fD_3 \right] + \bar{P}_x \left[- (4m_1 - 3m_3) \cdot bA_1 + (4m_2 - 3m_4) \cdot bA_2 + 2u_3 \cdot bA_3 + m_1 \cdot gD_1 - m_4 \cdot gD_2 + 2u_3 \cdot gD_3 \right] + \bar{P}_x \left[- u_2(2m_1 - m_3) \cdot eB_1 + u_1(2m_2 - m_4) \cdot eB_2 - u_2m_3 \cdot eC_1 + u_1m_4 \cdot eC_2 \right]
\]

(3)

\[
\sigma_{yy}^C = 4\bar{P}_x \frac{m_3}{u_1} \left(aA_1 - aA_2 \right) + 4\bar{P}_x \frac{m_1}{u_1} \left(bA_1 - bA_2 \right)
\]

(4)

\[
\tau_{xz}^C = \bar{P}_x \left(\frac{m_3}{u_1} \cdot dB_1 - \frac{m_1}{u_1} \cdot dB_2 \right) + 2\bar{P}_x \left(\frac{m_3}{u_2} \cdot cB_1 - \frac{m_1}{u_2} \cdot cB_2 \right)
\]

(5)

\[
\tau_{xy}^C = \bar{P}_x \left(\frac{m_2}{u_1} \cdot dB_1 - \frac{m_1}{u_1} \cdot dB_2 + \frac{m_2}{u_1} \cdot cB_1 + \frac{m_1}{u_1} \cdot cB_2 \right)
\]

(6)

Fig. 6. Influence chart for \(\epsilon_C \), (influence value per block is \(\pm 0.001 \), negative influences are indicated by a minus, \((-\)), sign).
\[r_{xc}^C = \frac{P_s}{u_1} \left(-\frac{m_1}{u_2} \cdot eB_1 + \frac{m_2}{u_2} \cdot eB_2 + eB_3 + \frac{m_3}{u_1} \cdot eC_1 \right) - \frac{m_3}{u_2} \cdot eC_2 + eC_3 + \frac{P_s}{u_1} \left(\frac{m_1}{u_1} \cdot dC_1 - \frac{m_2}{u_2} \cdot dC_2 + dC_3 \right) + 4P_s \frac{u_2m_3}{u_1} \left(aA_1 - aA_2 \right) \]

\[r_{xy}^C = P_s \left(-m_1 \cdot hA_1 + m_4 \cdot hA_2 - 2u_3 \cdot hA_3 - m_3 \cdot gD_1 + m_4 \cdot gD_2 - 2u_3 \cdot gD_1 \right) + P_s \left(-m_3 \cdot aA_1 + m_4 \cdot aA_2 + 2u_3 \cdot aA_3 - m_3 \cdot fD_1 + m_4 \cdot fD_2 - 2u_3 \cdot fD_1 \right) + P_s \left(u_2m_3 \cdot dC_1 - u_1m_4 \cdot dC_2 \right), \]

where

\[m_1 = \frac{u_2^2}{u_2 - u_1}, \quad m_2 = \left(\frac{u_2}{u_1} \right)^2 m_1, \quad m_3 = \frac{2u_2^2}{u_1(n + u_1)} m_1, \]

\[m_4 = \frac{n}{u_1} m_3, \quad n = \frac{(C_{13} + C_{44})u_1}{C_{33}u_2^2 - C_{44}}. \]

\[a = \sin \beta, \quad b = 1 - \cos \beta, \quad c = \frac{\beta}{2\pi}, \quad d = \frac{1 - \cos 2\beta}{2}, \]

\[e = \frac{\sin 2\beta}{2}, \quad f = \frac{\sin 3\beta}{3}, \quad g = \frac{\cos 3\beta - 1}{3}; \]

\[A_i = \frac{1}{8\pi} \left(-\sin \xi_i + \ln \left| \frac{1 + \sin \xi_i}{\cos \xi_i} \right| \right), \quad B_i = \frac{1}{2} - \cos \xi_i. \]

\[C_i = \frac{1}{4\pi} \left(2 \ln \left| \frac{1 + \cos \xi_i}{2 \cos \xi_i} \right| + \cos \xi_i - 1 \right), \]

\[D_i = \frac{1}{8\pi} \left[-\frac{(1 - \cos \xi_i)(7 - \cos \xi_i)}{\sin \xi_i} + 3 \ln \left| \frac{1 + \sin \xi_i}{\cos \xi_i} \right| \right]. \]

And

\[\tan \xi_i = \frac{r}{u_i z} \quad (i = 1, 2, 3); \]

\[u_1 = \sqrt{C_{66}/C_{44}}; \quad u_1 \text{ and } u_2 \text{ are the roots of the following characteristic equation:} \]

\[u^4 - su^2 + q = 0 \quad (9) \]

where \[s = \frac{[C_{11}(C_{33} - C_{13})(C_{13} + 2C_{44})]}{(C_{33}C_{44})}, \quad q = \frac{C_{11}}{C_{33}}. \]

If the strain energy is assumed positively definite in the medium [53], the root of Equation (9), \(u_1 \) and \(u_2 \) are restricted to the following three cases:
<table>
<thead>
<tr>
<th>β (deg.) Increment in a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>1/6</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>14.48</td>
<td>1/4</td>
<td>1/6</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>180</td>
<td>1/2</td>
<td>14.48</td>
<td>-1/4</td>
<td>138.19</td>
<td>138.19</td>
</tr>
<tr>
<td>-1/2</td>
<td>1/4</td>
<td>90</td>
<td>1/4</td>
<td>160.53</td>
<td>160.53</td>
</tr>
<tr>
<td>150</td>
<td>-1/2</td>
<td>123.56</td>
<td>-1/4</td>
<td>170.41</td>
<td>170.41</td>
</tr>
<tr>
<td>180</td>
<td>-1/4</td>
<td>56.44</td>
<td>-1/4</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>131.41</td>
<td>-1/4</td>
<td>48.59</td>
<td>-1/4</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>-1/4</td>
<td>61.04</td>
<td>-1/4</td>
<td>160.53</td>
<td>160.53</td>
</tr>
<tr>
<td>165.52</td>
<td>-1/4</td>
<td>118.96</td>
<td>-1/4</td>
<td>170.41</td>
<td>170.41</td>
</tr>
<tr>
<td>180</td>
<td>-1/4</td>
<td>141.32</td>
<td>-1/4</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>138.19</td>
<td>-1/4</td>
<td>131.41</td>
<td>-1/4</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>160.53</td>
<td>-1/4</td>
<td>172.82</td>
<td>-1/4</td>
<td>165.52</td>
<td>165.52</td>
</tr>
<tr>
<td>180</td>
<td>-1/4</td>
<td>157.98</td>
<td>-1/4</td>
<td>172.82</td>
<td>172.82</td>
</tr>
<tr>
<td>180</td>
<td>-1/4</td>
<td>157.98</td>
<td>-1/4</td>
<td>172.82</td>
<td>172.82</td>
</tr>
</tbody>
</table>

For β between 0 and -180, the increment in a is the same as above.

Case 1. When \(s^2 - 4q > 0 \),

\[
u_{1,2} = \pm \sqrt{s \pm \sqrt{s^2 - 4q}}\]

are two real distinct roots.

Case 2. When \(s^2 - 4q = 0 \),

\[
u_{1,2} = \pm \frac{s}{2} \pm \frac{s}{2}
\]

are real double roots (i.e., complete isotropy).

Case 3. When \(s^2 - 4q < 0 \),

\[
u_1 = \frac{s + \sqrt{s^2 + 4q}}{2} - i \frac{s + \sqrt{s^2 + 4q}}{2} = \gamma - i\delta, \quad u_2 = \gamma + i\delta
\]

are two conjugate complex roots (where symbol \(\gamma \) cannot be equal to zero [1]).

Using engineering elastic constants, the following criterion can distinguish the root type of Equation (9).

\[
\left(\frac{G}{G'} \right)^2 (1 + \nu) - \left(\frac{E}{E'} \right) \left[1 - \nu + \left(\frac{E}{G'} \right) \nu' - 2 \left(\frac{E}{E'} \right) \nu^2 \right] > 0, \quad \text{for case 1}
\]

\[
= 0, \quad \text{for case 2}
\]

\[
< 0, \quad \text{for case 3}
\]

(10)
Table 3. Values of A_i with various r/u_z

<table>
<thead>
<tr>
<th>Increment A_i in A_i</th>
<th>r/u_z</th>
<th>No. of segments in 1/4 circle</th>
<th>The numbered block in Fig. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.002</td>
<td>0.856</td>
<td>2</td>
</tr>
<tr>
<td>0.007</td>
<td>0.002</td>
<td>1.005</td>
<td>2</td>
</tr>
<tr>
<td>0.009</td>
<td>0.002</td>
<td>1.143</td>
<td>2</td>
</tr>
<tr>
<td>0.011</td>
<td>0.002</td>
<td>1.276</td>
<td>2</td>
</tr>
<tr>
<td>0.015</td>
<td>0.004</td>
<td>1.803</td>
<td>4</td>
</tr>
<tr>
<td>0.019</td>
<td>0.004</td>
<td>2.081</td>
<td>4</td>
</tr>
<tr>
<td>0.023</td>
<td>0.004</td>
<td>2.376</td>
<td>4</td>
</tr>
<tr>
<td>0.027</td>
<td>0.004</td>
<td>2.693</td>
<td>4</td>
</tr>
<tr>
<td>0.031</td>
<td>0.004</td>
<td>3.812</td>
<td>6</td>
</tr>
<tr>
<td>0.043</td>
<td>0.006</td>
<td>4.492</td>
<td>6</td>
</tr>
<tr>
<td>0.049</td>
<td>0.006</td>
<td>5.274</td>
<td>6</td>
</tr>
<tr>
<td>0.055</td>
<td>0.006</td>
<td>6.176</td>
<td>6</td>
</tr>
<tr>
<td>0.061</td>
<td>0.006</td>
<td>7.218</td>
<td>6</td>
</tr>
<tr>
<td>0.075</td>
<td>0.008</td>
<td>10.876</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gerrard [54] and Amadei et al. [53] demonstrated that, for most transversely isotropic rocks, E/E' and G'/G' are within 1 and 3; the Poisson's ratios ν and ν' are within between 0.15 and 0.35. Figure 2 presents the distribution of the three types of the characteristic roots for transversely isotropic rocks with E/E' and G'/G' ranging from 1 to 3. This figure reveals that approximately two thirds of transversely isotropic rocks belong to case 1 (i.e., two real distinct roots). The results shown in Fig. 2 are compatible with available published data [46-51] listed in Table 1 where all but one transversely isotropic rock belong to case 1.

Preparation of the influence charts

The new influence charts include an index scale representing the depth of the desired point, and numbers of concentric circles and radial lines. A unit block, except for those adjacent to the point C_i is formed by two radial lines and two concentric circle arcs. $|\sigma|^2$ depends on the geometry of the loaded sector as described in Equations (3)-(8). The geometry is defined by a set of coefficients $a, b, c, d, e, f, g, A_1, B_1, C_1$, and D_1. The values of a, b, c, d, e, f and g depend on the central angle β. The coefficients A_1, B_1, C_1, and D_1 relate to the ratio of r/u_z. The value of c is positive regardless of the value of β. The others (i.e. a, b, d, e, f and g) can be either positive or negative. For a given depth u_z, the values of A_1, B_1, C_1, and D_1 depend only on r, and $A_1 = A_2 = A_3$, $B_1 = B_2 = B_3$, and so on. Charts for $aA_1, bA_1, cB_1, dC_1, eC_1, fD_1$, and gD_1 are required for estimating $|\sigma|^2$ in a half-space graphically. Considering the symmetric properties of triangular functions, the charts for aA_1 and bA_1 are identical, except that the x- and y-axes are exchanged. The same is true for fD_1 and gD_1. Consequently, only five independent charts (i.e., $aA_1, bB_1, cC_1, eC_1, fD_1$) are needed for computing $|\sigma|^2$. Figures 3-7 depict the influence charts of $aA_1, bB_1, cC_1, eC_1, fD_1$, respectively. The index length of depth u_z in these figures is set to 1.3 cm. The calculated r is symmetrical with respect to the origin O, therefore, only one quarter of the charts is drawn. The sign "−" in the figures indicates that the values of $a,
b, d, e, f and g are negative. The influence value is negative for blocks with a "---" sign.

To explain the construction of the influence charts, details of the preparation for aA_i chart are described below.

Considering a unit load intensity, the values of a (as a function of β) and A_i (as a function of $r_i u_e$) are calculated and listed in Tables 2-3. Table 2 shows increment of a in the first quadrant, the increment value of a is negative when the blocks locate in the second and third quadrants. A_i increases with $r_i u_e$ as shown in Table 3. For a given value of a with respect to β, the increment value of A_i, 0.001, 0.002, 0.004, 0.006, 0.008, etc., is selected for the first, second, third, fourth, fifth, etc., ring group of the area formed by two adjacent concentric circles. The corresponding values of $r_i u_e$ for the circles are listed in Table 3. Combining the numerical values of a and A_i, the radial lines and the concentric circles are drawn so that aA_i for all blocks in the chart is 0.001. For example, with specific values of β and $r_i u_e$ (the value of aA_i being 0.001 at the shaded area), the blocks numbered 1, 2, 4, 6, 8 in Fig. 8 are determined. The five independent charts are constructed according to the same unit length u_e.

For a medium with conjugate complex roots of its characteristic equation (Equation (9)), the value of u_e is a complex variable and the influence charts cannot be drawn in this manner. For case 3 material, the preparation of influence charts requires elastic constants as a prior and u_e being replaced by z. It means that the charts prepared for case 3 material are valid only for a particular medium. Appendix A illustrates the method for constructing the influence charts and procedure to calculate vertical stress in a half-space for case 3 material.

PROCEDURE FOR USING THE INFLUENCE CHARTS

The influence charts provide an estimate of the six components of $[\sigma]$ at a point in the half-space subjected to three-dimensional surface loads with arbitrary shapes. A detailed procedure for establishing the charts and their applications is described as follows:

1. Identify the type of rock (i.e. isotropic, transversely isotropic, orthotropic or generally anisotropic). If the rock is isotropic, the desired stresses can be computed using the Newmark’s charts [38]. If the rock is orthotropic or generally anisotropic, there are no influence charts available.
(2) Verify if the planes of isotropy are parallel to the surface. The influence charts reported herein are applicable only if the planes of isotropy are parallel to the surface.

(3) Determine the root type of characteristic equation [i.e. case 1, 2 or 3, in Equation (10)] for the half-space. Continue to step (4) through (9) if the root type is case 1 or case 2. If the root type is case 3, the influence charts will have to be prepared individually and the following steps do not apply.

(4) Calculate the characteristic root \(u_i \) \((i = 1, 2, 3) \) from Equation (9), functions \(n \) and \(m_1 \sim m_3 \).

(5) Compute \(u_{cz} \) \((i = 1, 2, 3) \) and use that as the unit length to scale the loaded areas on each influence chart (shown at the right hand corner in Figs 3–7).

(6) Redraw the plan of the loaded area using the scale obtained in step (5). A transparent paper is recommended.

(7) Place the plan of the loaded area plotted in step (6) on the influence charts. The point at which the
Fig. 10. (a) Plan of loaded area acting on the surface. (b) The blocks covered by the plan of the loaded area for A_1. (c) The blocks covered by the plan of the loaded area for A_2.
Table 4. The calculated procedures and results for transversely isotropic rocks subjected to the loaded area of Fig. 10(a)

<table>
<thead>
<tr>
<th>Coefficients associated with Eqs (11)-(16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4\omega m_1/m_0 = 5.591$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of blocks on Figs 3-7</th>
<th>$a A_3 32$</th>
<th>$a A_2 20$</th>
<th>$a B_3 19$</th>
<th>$e B_1 61$</th>
<th>$e B_2 60$</th>
<th>$e C_3 58$</th>
<th>$e C_2 23$</th>
<th>$e B_1 61$</th>
<th>$e B_2 60$</th>
<th>$e C_1 2$</th>
<th>$e C_2 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence value</td>
<td>0.001</td>
<td>0.012</td>
<td>0.013</td>
<td>0.001</td>
<td>0.001</td>
<td>0.013</td>
<td>0.012</td>
<td>0.001</td>
<td>0.001</td>
<td>0.013</td>
<td>0.012</td>
</tr>
<tr>
<td>Normalized stresses</td>
<td>ϵ_{ij}^P / P</td>
</tr>
<tr>
<td>Equation (15)</td>
<td>Equation (14)</td>
<td>Equation (13)</td>
<td>Equation (16)</td>
<td>Equation (12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated results</td>
<td>0.0671</td>
<td>0.1342</td>
<td>0.1237</td>
<td>0.0319</td>
<td>0.0902</td>
<td>0.1287</td>
<td>0.1248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical results</td>
<td>0.0701</td>
<td>0.1302</td>
<td>0.1219</td>
<td>0.0308</td>
<td>0.0879</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error percent (%)</td>
<td>4.3</td>
<td>3.1</td>
<td>1.5</td>
<td>3.6</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Five elastic constants: $E = 51.8$ GPa, $E' = 32.2$ GPa, $\nu = 0.19$, $\nu' = 0.18$, $G = 13.3$ GPa. Elastic constants: $C_{11} = 58.5$ GPa, $C_{12} = 13.2$ GPa, $C_{13} = 37.0$ GPa, $C_{44} = 13.3$ GPa, $C_{66} = 21.8$ GPa. Characteristic roots: $\omega_1 = 0.758$, $\omega_2 = 1.658$, $\omega_3 = 1.279$. Related coefficients: $n = 2.527$, $m_1 = 0.639$, $m_2 = 3.056$, $m_3 = 0.839$, $m_4 = 2.797$.

Equations (11)-(16) indicate that knowing the elastic constants ω_1, ω_2, ω_3, and ω_4, one can rewrite Equations (11)-(16) and use them to calculate the normalized stresses ϵ_{ij}^P / P.
fluence charts would be enough to determine the six components of $[e^*]$. For example, influence charts for c_B and e_C can be used to compute e_{11}^* and e_{22}^*; influence chart c_B is enough for calculating e_{22}^*, e_{11}^*, e_{22}^*, and can be estimated from the influence chart of b_A, a_A, and d_C, respectively. For illustrative purpose, the procedure of calculating e_{ij}^*/P_i is described as follows:

1. Calculate the characteristic root u_i ($i = 1, 2, 3$) from Equation (9), functions n and $m_1=m_8$. The results are given in Table 4.

2. Set the unit length as: $u_{1x} = 6.064$, $u_{2x} = 13.264$ for a_A and a_A2, respectively.

3. Redraw the plan of the loaded area using the scales obtained in step (2) on transparent papers (for a_A and a_A2).

4. Place the transparent papers prepared in step (3) on the influence chart (aA). Point C should be placed over the center of the chart. Figures 10(b) and (c) demonstrate the procedure for overlapping planes of the loaded area on the chart for a_A and a_A2, respectively.

5. Count the number of blocks on Fig. 10(b) and (c) covered by the loaded area. The numbers of blocks, rounded to the nearest integer, is 32 in Fig. 10(b) and 20 in Fig. 10(c).

6. From Equation (15), the normalized shear stress (e_{ij}^*/P_i) at point C is computed as:

$$e_{ij}^*/P_i = 5.951 \times (32 - 20) \times 0.001 = 0.0671$$

Similarly, the other normalized stress components can be calculated and the results are shown in Table 4. Comparing the results with analytic solutions of Lin et al. [6] by superposition, the six stress components computed using the influence charts agree with the analytic results within 3%.

CONCLUSIONS

Based on the integration of closed-form solutions for a point load, a series of five influence charts have been developed to calculate the stress tensor within an elastic transversely isotropic half-space that is subjected to a surface load with an irregularly-shaped area. Following the idea of Newmark's charts for isotropic materials, the new influence charts consist of unit blocks. Each unit block is bounded by two adjacent radii and arcs, and contributes the same influence to the induced stress. In this article, the influence of each unit block is selected to be 0.001 of the surface load intensity. The stress at the point of interest is computed by counting the number of blocks covered by the plan of the loaded area drawn to a scale set by the material properties. The proposed influence charts are suitable for transversely isotropic materials with real roots of the characteristic equation. The new influence charts are easy to use and results are reasonably accurate. These charts offer a practical alternative to analytical and numerical solutions.

REFERENCES

4. Anon, De spanningsverdeling in een homogen anisotroop elas-

18. Hayekawa, H. and Watanabe, K., *Green's functions for axisym-
metric surface force problems of an elastic half space with trans-

19. Hansen, M. T. and Wang, Y., *Concentrated ring loadings in a full space or half space: solutions for transverse isotropy and iso-

22. Wolf, K., *Ausbreitung der kraft in der halbe unbegrenzten halb-

24. Hall, R. W., *Traction problems on an elastic jointed rock half-

Fig. A1. Plan of loaded area on the influence chart for \(\sigma_z \) (\(E = 50 \text{ GPa}, G = 25 \text{ GPa}, G'G = 1, \nu = \nu' = 0.25 \), influence value per block is 0.001).

APPENDIX A

To demonstrate the construction of influence charts and their applications for case 3, an example for evaluating vertical stress (\(\sigma_z \)) in the elastic half-space, induced by a uniform normal load (\(F_z \)) is illustrated. Say that \(u = -y - 4k, u = y + 4k \), the normalized vertical stress \(\frac{\sigma_z}{k} \), can be expressed in terms of the central angle \(\beta \) and a depth ratio \(\gamma / k \) as follows:

\[
\frac{\sigma_z}{k} = \frac{2 \gamma}{\pi} \int \frac{d\theta}{2} \left[\frac{\sin^2 \theta}{\sin^2 \beta} + \frac{\sin^2 \beta}{\sin^2 \theta} \right] \left(1 - \frac{\sin \theta}{\sin \beta} \right) \left(1 - \frac{\sin \beta}{\sin \theta} \right)
\]

where

\[
\theta = \frac{\beta}{2}, \quad B^2 = \left[1 - \frac{\sin^2 \beta}{\sin^2 \theta} \right] / 2h, \quad h = \frac{h^2}{2} + \frac{\sin^2 \beta}{\sin^2 \theta}, \quad j = \frac{1}{2} \left(\frac{\sin^2 \beta}{\sin^2 \theta} \right)^2 - \frac{\sin^2 \beta}{\sin^2 \theta} \frac{\sin^2 \beta}{\sin^2 \theta}.
\]

In establishing the chart of \(\sigma_z / k \), the elastic constants of the medium are involved. Assuming that the elastic constants are \(E = 50 \text{ GPa}, G = 25 \text{ GPa}, G'G = 1 \), and \(k = k' = 0.25 \), and solving Equation (9), the characteristic roots are complex and the values of symbol \(b \) and \(d \) are 1.0082 and 0.5914, respectively. The rest of the procedure in setting up \(\sigma_z / k \) chart is similar to those of \(\sigma_{xx}, \sigma_{yy}, \sigma_{xx} \), \(c_{11} \), \(c_{12} \), and \(d \). Figure A1 shows the influence chart of \(\sigma_z / k \). For a uniform load as shown in Fig. 10(a) and using \(z \) as the scale (right hand corner of Fig. 11), one can redraw the plan of the loaded area. The number of blocks covered by the loaded area is approximately 75. Using Equation (A.1), the normalized vertical stress \(\sigma_z / F_z \) is equal to 0.15 (\(= 2 \times 75 \times 0.001 \)). The result is very close to the exact solution (0.1535) of Lin et al. [6] by superposition.

Accepted for publication 12 February 1998.